構成紡錘體的是紡錘絲還是星射線人教版《生物·必修1·分子與細胞》第6章在講述有絲分裂時,關于動物細胞和植物細胞紡錘體形成的區別是這樣描述的:植物細胞是從細胞的兩極發出紡錘絲,形成一個梭形的紡錘體。而動物細胞是在兩極的中心粒周圍發出大量的星射線,兩組中心粒之間的星射線形成了紡錘體。而在《生物·必修2·遺傳與進化》第2章以哺乳動物精子形成過程為例講述減數分裂過程時,又用了“紡錘絲”這一表述。同一套教材,前后表述不一致,讓教師的教學和學生的學習都產生了困惑。“紡錘絲”一詞的由來是因為紡錘體微管在電子顯微鏡下呈絲狀,在浙科版教材中即為這樣表述,且不論動物細胞還是植物細胞都用“紡錘絲”。不管是紡錘絲還是星射線,都是教材編寫者為了學生更好地理解和學習“紡錘體微管”這一名詞。紡錘體的異??赡軐е逻z傳信息的丟失或重復,進而引發遺傳性疾病。深圳Hamilton Thorne紡錘體揭示卵母細胞關鍵結構
液晶偏振光顯微鏡是一種將液晶可變減速器、電子成像及數碼成像技術結合起來的成像系統,能夠觀測到具有雙折性特征的細胞結構,如紡錘體和透明帶。Polscope成像系統無需對細胞進行固定和染色,因此能夠評估卵母細胞的質量與紡錘體、透明帶等的相關性。在紡錘體卵冷凍研究中,Polscope成像系統可用于實時監測冷凍過程中紡錘體的形態變化,評估冷凍保護劑的效果和冷凍速率對紡錘體的影響。此外,解凍后也可利用Polscope成像系統評估紡錘體的恢復情況和穩定性,從而篩選出高質量的卵母細胞進行后續操作。深圳卵母細胞紡錘體改善分級紡錘體在細胞分裂后期推動染色體向細胞兩極移動。
在核移植過程中,紡錘體的穩定性是首要考慮的問題。冷凍和解凍過程中的溫度變化和冷凍保護劑的毒性都可能對紡錘體造成損傷,導致染色體分離異常,進而影響胚胎發育。因此,如何在冷凍過程中保持紡錘體的穩定性,是核移植紡錘體卵冷凍研究面臨的重要挑戰。體細胞核在移入去核卵母細胞后,需要經歷復雜的重新編程過程,以獲得全能性。然而,這一過程受到多種因素的調控,包括表觀遺傳修飾、轉錄因子表達等。在冷凍過程中,這些調控機制可能受到干擾,導致重新編程失敗或異常,從而影響胚胎發育。
紡錘體的完整性決定了染色體分裂的正確性。在有絲分裂前期,中心體被復制形成兩個中心體,并逐漸分離,形成兩個紡錘體。紡錘體的微管從中心體發出,與染色體上的著絲粒(kinetochore)結合。著絲粒是一組復雜的蛋白質結構,可以與微管的末端結合。當纖維束的微管末端與著絲粒結合時,纖維束開始縮短,將染色體拉向兩端,實現染色體的精確分離。這一過程不僅確保了每個新細胞都能獲得正確數量的染色體,還保證了遺傳信息的穩定傳遞。紡錘體的一端連接著染色體,另一端則錨定在細胞兩極。
Oosight影像分析系統采用液晶偏光成像技術,無需對卵母細胞進行染色,即可實時、清晰、高對比度地進行紡錘體結構和透明帶成像,對ICSI、核移植操作、卵母細胞質量評價等有很好的輔助作用。主要應用ICSI:在單精胞漿注射過程中定位初級卵母細胞,避免卵的破裂損傷,增強胚胎的發育潛能。卵評估:利用定量的分析數據對卵進行分級,改善對胚胎的選擇。體外成熟評估:在未成熟卵催化(IVM)過程判斷成熟期,判斷依據采用的是準確的識別紡錘體,而非不準確的極體。質量控制:利用定量的分析數據對卵進行分級,改善對胚胎的選擇。核移植:顯著提高核移植的成功率。由于在核摘除的過程可以清楚的看到核質,使得核移植的成功率增加了80%,并減少了線粒體DNA的摘除。卵冷凍研究:對冷凍的初級卵母細胞進行解凍前和解凍后的定量分析,從而判斷卵的發育力,改善妊娠率。紡錘體研究:檢測胚胎中紡錘體的發育過程,確定正常和非正常分裂率(只可用于搭配有培養箱的顯微鏡)??梢詫θ旧w非正常的或非整倍體的胚胎成像,從而選擇***的前體做PGD診斷。透明帶研究:測量卵母細胞的透明帶;準確測量紡錘體和透明帶中分子排列方向的差別變化,判斷紡錘體和透明帶是否處于正常狀態紡錘體在細胞分裂后期通過收縮力推動染色體分離。上海成熟卵母細胞紡錘體Oosight Basic
顯微鏡下的紡錘體,如同精密的分子機器,引導染色體分離。深圳Hamilton Thorne紡錘體揭示卵母細胞關鍵結構
在有絲分裂中,紡錘體負責將姐妹染色單體分離并牽引至細胞兩極,形成兩個遺傳物質完全相同的子細胞。而在減數分裂中,紡錘體則負責將同源染色體分離并牽引至細胞兩極,形成四個遺傳物質相似的子細胞。這一過程實現了遺傳信息的重組和配子的形成。其次,在有絲分裂中,紡錘體的形成和分裂過程相對簡單,主要依賴于中心體的復制和分離以及微管的動態生長和縮短。而在減數分裂中,紡錘體的形成和分裂過程則更加復雜。在減數分裂Ⅰ的前期,同源染色體需要發生配對、聯會、交換和交叉等過程,這些過程都依賴于紡錘體的微管網絡。此外,在減數分裂Ⅱ中,姐妹染色單體的分離也需要紡錘體的牽引和定位。此外紡錘體在有絲分裂和減數分裂中的形態和大小也存在差異。在有絲分裂中,紡錘體通常呈現出較為規則的紡錘形狀,而在減數分裂中,紡錘體的形態則更加多樣化,可能呈現出不規則的形狀或分叉的形態。深圳Hamilton Thorne紡錘體揭示卵母細胞關鍵結構