特征之間存在部分重疊,但特征類型間存在著互補(bǔ),融合這些不同抽象層次的特征可更好的識(shí)別軟件的真正性質(zhì)。且惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測,但惡意軟件很難同時(shí)偽造多個(gè)抽象層次的特征逃避檢測。基于該觀點(diǎn),本發(fā)明實(shí)施例提出一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測方法,以實(shí)現(xiàn)對(duì)惡意軟件的有效檢測,提取了三種模態(tài)的特征(dll和api信息、pe格式結(jié)構(gòu)信息和字節(jié)碼3-grams),提出了通過前端融合、后端融合和中間融合這三種融合方式集成三種模態(tài)的特征,有效提高惡意軟件檢測的準(zhǔn)確率和魯棒性,具體步驟如下:步驟s1、提取軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息、pe格式結(jié)構(gòu)信息以及字節(jié)碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖;統(tǒng)計(jì)當(dāng)前軟件樣本的導(dǎo)入節(jié)中引用的dll和api,提取得到當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息的特征表示。對(duì)當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件進(jìn)行格式結(jié)構(gòu)解析,并按照格式規(guī)范提取**該軟件樣本的格式結(jié)構(gòu)信息,得到該軟件樣本的二進(jìn)制可執(zhí)行文件的pe格式結(jié)構(gòu)信息的特征表示。壓力測試表明系統(tǒng)在5000并發(fā)用戶時(shí)響應(yīng)延遲激增300%。第三方軟件驗(yàn)收測評(píng)機(jī)構(gòu)排名
12)把節(jié)裝入到vmm的地址空間,(13)可選頭部的sizeofcode域取值不正確,(14)含有可疑標(biāo)志;所述存在明顯的統(tǒng)計(jì)差異的格式結(jié)構(gòu)特征包括:(1)無證書表;(2)調(diào)試數(shù)據(jù)明顯小于正常文件,(3).text、.rsrc、.reloc和.rdata的characteristics屬性異常,(4)資源節(jié)的資源個(gè)數(shù)少于正常文件。進(jìn)一步的,所述生成軟件樣本的字節(jié)碼n-grams特征視圖的具體實(shí)現(xiàn)過程如下:先從當(dāng)前軟件樣本的所有短序列特征中選取詞頻tf**高的多個(gè)短序列特征;然后計(jì)算選取的每個(gè)短序列特征的逆向文件頻率idf與詞頻tf的乘積,并將其作為選取的每個(gè)短序列特征的特征值,,表示該短序列特征表示其所在軟件樣本的能力越強(qiáng);**后在選取的詞頻tf**高的多個(gè)短序列特征中選取,生成字節(jié)碼n-grams特征視圖;:=tf×idf;其中,ni,j是短序列特征i在軟件樣本j中出現(xiàn)的次數(shù),∑knk,j指軟件樣本j中所有短序列特征出現(xiàn)的次數(shù)之和,k為短序列特征總數(shù),1≤i≤k;其中,|d|指軟件樣本j的總數(shù),|{j:i∈j}|指包含短序列特征i的軟件樣本j的數(shù)目。進(jìn)一步的,所述步驟s2采用中間融合方法訓(xùn)練多模態(tài)深度集成模型。第三方軟件測試哪家好能耗評(píng)估顯示后臺(tái)服務(wù)耗電量超出行業(yè)基準(zhǔn)值42%。
I)應(yīng)用過程數(shù)據(jù)預(yù)防缺陷。這時(shí)的軟件**能夠記錄軟件缺陷,分析缺陷模式,識(shí)別錯(cuò)誤根源,制訂防止缺陷再次發(fā)生的計(jì)劃,提供**這種括動(dòng)的辦法,并將這些活動(dòng)貫穿于全**的各個(gè)項(xiàng)目中。應(yīng)用過程數(shù)據(jù)預(yù)防缺陷有礴個(gè)成熟度子目標(biāo):1)成立缺陷預(yù)防組。2)識(shí)別和記錄在軟件生命周期各階段引入的軟件缺陷和消除的缺陷。3)建立缺陷原因分析機(jī)制,確定缺陷原因。4)管理,開發(fā)和測試人員互相配合制訂缺陷預(yù)防計(jì)劃,防止已識(shí)別的缺陷再次發(fā)生。缺陷預(yù)防計(jì)劃要具有可**性。(II)質(zhì)量控制在本級(jí),軟件**通過采用統(tǒng)計(jì)采樣技術(shù),測量**的自信度,測量用戶對(duì)**的信賴度以及設(shè)定軟件可靠性目標(biāo)來推進(jìn)測試過程。為了加強(qiáng)軟件質(zhì)量控制,測試組和質(zhì)量保證組要有負(fù)責(zé)質(zhì)量的人員參加,他們應(yīng)掌握能減少軟件缺陷和改進(jìn)軟件質(zhì)量的技術(shù)和工具。支持統(tǒng)計(jì)質(zhì)量控制的子目標(biāo)有:?1)軟件測試組和軟件質(zhì)量保證組建立軟件產(chǎn)品的質(zhì)量目標(biāo),如:產(chǎn)品的缺陷密度,**的自信度以及可信賴度等。2)測試管理者要將這些質(zhì)量目標(biāo)納入測試計(jì)劃中。3)培訓(xùn)測試組學(xué)習(xí)和使用統(tǒng)計(jì)學(xué)方法。4)收集用戶需求以建立使用模型(III)優(yōu)化測試過程在測試成熟度的***,己能夠量化測試過程。這樣就可以依據(jù)量化結(jié)果來調(diào)整測試過程。
圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構(gòu)圖。圖5是前端融合模型的準(zhǔn)確率變化曲線圖。圖6是前端融合模型的對(duì)數(shù)損失變化曲線圖。圖7是前端融合模型的檢測混淆矩陣示意圖。圖8是規(guī)范化前端融合模型的檢測混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構(gòu)圖。圖11是后端融合模型的準(zhǔn)確率變化曲線圖。圖12是后端融合模型的對(duì)數(shù)損失變化曲線圖。圖13是后端融合模型的檢測混淆矩陣示意圖。圖14是規(guī)范化后端融合模型的檢測混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構(gòu)圖。圖17是中間融合模型的準(zhǔn)確率變化曲線圖。圖18是中間融合模型的對(duì)數(shù)損失變化曲線圖。圖19是中間融合模型的檢測混淆矩陣示意圖。圖20是規(guī)范化中間融合模型的檢測混淆矩陣示意圖。圖21是中間融合模型的roc曲線圖。具體實(shí)施方式下面將結(jié)合本發(fā)明實(shí)施例中的附圖,對(duì)本發(fā)明實(shí)施例中的技術(shù)方案進(jìn)行清楚、完整地描述,顯然,所描述的實(shí)施例**是本發(fā)明一部分實(shí)施例,而不是全部的實(shí)施例。基于本發(fā)明中的實(shí)施例,本領(lǐng)域普通技術(shù)人員在沒有做出創(chuàng)造性勞動(dòng)前提下所獲得的所有其他實(shí)施例,都屬于本發(fā)明保護(hù)的范圍。企業(yè)數(shù)字化轉(zhuǎn)型指南:艾策科技的實(shí)用建議。
后端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖13所示,規(guī)范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構(gòu)如圖16所示,中間融合方式用深度神經(jīng)網(wǎng)絡(luò)從三種模態(tài)的特征分別抽取高等特征表示,然后合并學(xué)習(xí)得到的特征表示,再作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入訓(xùn)練模型,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。圖16中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是128,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且3個(gè)隱含層中間間隔設(shè)置有dropout層。用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,其第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且2個(gè)隱含層中間設(shè)置有dropout層。用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是512,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是384,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是256,第四個(gè)隱含層的神經(jīng)元個(gè)數(shù)是125。艾策科技:如何用數(shù)據(jù)分析重塑企業(yè)決策!源代碼第三方審計(jì)報(bào)告
自動(dòng)化測試發(fā)現(xiàn)7個(gè)邊界條件未處理的異常情況。第三方軟件驗(yàn)收測評(píng)機(jī)構(gòu)排名
以備實(shí)際測試嚴(yán)重偏離計(jì)劃時(shí)使用。在TMM的定義級(jí),測試過程中引入計(jì)劃能力,在TMM的集成級(jí),測試過程引入控制和監(jiān)視活動(dòng)。兩者均為測試過程提供了可見性,為測試過程持續(xù)進(jìn)行提供保證。第四級(jí)管理和測量級(jí)在管理和測量級(jí),測試活動(dòng)除測試被測程序外,還包括軟件生命周期中各個(gè)階段的評(píng)審,審查和追查,使測試活動(dòng)涵蓋了軟件驗(yàn)證和軟件確認(rèn)活動(dòng)。根據(jù)管理和測量級(jí)的要求,軟件工作產(chǎn)品以及與測試相關(guān)的工作產(chǎn)品,如測試計(jì)劃,測試設(shè)計(jì)和測試步驟都要經(jīng)過評(píng)審。因?yàn)闇y試是一個(gè)可以量化并度量的過程。為了測量測試過程,測試人員應(yīng)建立測試數(shù)據(jù)庫。收集和記錄各軟件工程項(xiàng)目中使用的測試用例,記錄缺陷并按缺陷的嚴(yán)重程度劃分等級(jí)。此外,所建立的測試規(guī)程應(yīng)能夠支持軟件組終對(duì)測試過程的控制和測量。管理和測量級(jí)有3個(gè)要實(shí)現(xiàn)的成熟度目標(biāo):建立**范圍內(nèi)的評(píng)審程序,建立測試過程的測量程序和軟件質(zhì)量評(píng)價(jià)。(I)建立**范圍內(nèi)的評(píng)審程序軟件**應(yīng)在軟件生命周期的各階段實(shí)施評(píng)審,以便盡早有效地識(shí)別,分類和消除軟件中的缺陷。建立評(píng)審程序有4個(gè)子目標(biāo):1)管理層要制訂評(píng)審政策支持評(píng)審過程。2)測試組和軟件質(zhì)量保證組要確定并文檔化整個(gè)軟件生命周期中的評(píng)審目標(biāo),評(píng)審計(jì)劃。第三方軟件驗(yàn)收測評(píng)機(jī)構(gòu)排名