而且,潮濕的環境可能使電子元件的引腳或連接部分生銹,影響信號傳輸的穩定性,從而對檢測設備的整體性能產生負面影響。電磁干擾:電站現場存在大量的電氣設備和電磁輻射源,如變壓器、高壓線、通信設備等。這些電磁干擾可能會影響并網檢測設備的信號采集和處理。例如,高頻電磁干擾可能會疊加在檢測信號上,使檢測設備誤判電壓、電流的幅值和頻率,尤其是對于一些微弱信號的檢測,如小功率電站的諧波檢測,電磁干擾的影響可能更為明顯。設備的運行狀態和參數可以通過遠程監控平臺進行實時查看和管理。山西精密電站現場并網檢測設備作用
1、什么是儲能電站?
就當它是個大號充電寶,商用兆瓦級別,家用的容量小點。為方便安裝運輸,通常以標準集裝箱規格制作外包箱體。儲能電站并不全是鋰電池,鉛酸電池、液流電池、鈉硫電池都有,飛輪啊、超導啊也都是,抽水蓄能從理論上來說也是一種儲能方式,只不過現在鋰電池風頭正勁,占比較高。
2、為什么要建儲能電站?
儲能電站的主要作用是為清潔能源提供“蓄水池”。鋰電池儲能電站的興起有兩個關鍵因素:一是清潔能源需求持續增加。以水電、太陽能、風能為的清潔能源是降低碳排放的主力軍,但清潔能源比較大缺點是不穩定。水電站有枯水期,太陽和風也不可能24小時穩定在線。電無法儲存,電網根據用戶端的耗電需求調配發電廠上網功率,用多少就只能發多少。在精確匹配供需這點上,清潔能源沒有火電、核電來得方便,水電可以靠修水庫進行峰谷調節,太陽能和風能并網則嚴重依賴儲能系統,而傳統的非鋰電池儲能系統要么受地形限制無法推廣,要么性價比不高,早期鋰電池儲能系統也因電池價格昂貴無法大規模應用。 西藏電站現場并網檢測設備多少錢電站現場并網檢測設備的可靠性高,能夠實現大范圍數據采集和監測,為電網運行提供重要支撐和保障。
光伏電站的起火原因談及光伏電站的起火,德國的一項評估FireRisksinPhotovoltaicSystemsandDevelopingSafetyConceptsforRiskMinimization報告顯示,在安裝的170萬塊光伏組件中,發生了430起與組件相關的火災,其中210起由光伏系統本身所引起的。系統設計缺陷、組件缺陷或者安裝錯誤等因素都會導致光伏系統起火。據統計,80%以上的電站著火是因為直流側的故障。在光伏系統中,由于組件電壓疊加,一串組件電路往往具有600V~1000V左右的直流高電壓。當直流電路中出現線纜連接老化、連接器故障、型號不匹配、虛接或當極性相反的兩個導體靠得很近,而兩根電線之間的絕緣失效時,在高電壓的作用下,就很有可能產生直流電弧,產生明火,造成火災。由此可見,由直流高壓引起的電弧火花是光伏火災的“元兇”。
智能組串式方案:一包一優化、一簇一管理華為提出的智能組串式方案,針對集中式方案中三個主要問題進行解決:
(1)容量衰減。傳統方案中,電池使用具有明顯的“短板效應”,電池模塊之間并聯,充電時一個電池單體充滿,充電停止,放電時一個電池單體放空,放電停止,系統的整體壽命取決于壽命短的電池。
(2)一致性。在儲能系統的運行應用中,由于具體環境不同,電池一致性存在偏差,導致系統容量的指數級衰減。(3)容量失配。電池并聯容易造成容量失配,電池的實際使用容量遠低于標準容量。智能組串式解決方案通過組串化、智能化、模塊化的設計,解決集中式方案的上述三個問題:
(1)組串化。采用能量優化器實現電池模組級管理,采用電池簇控制器實現簇間均衡,分布式空調減少簇間溫差。(2)智能化。將AI、云BMS等先進ICT技術,應用到內短路檢測場景中,應用AI進行電池狀態預測,采用多模型聯動智能溫控策略保證充放電狀態比較好。
(3)模塊化。電池系統模塊化設計,可單獨切離故障模組,不影響簇內其它模組正常工作。將PCS模塊化設計,單臺PCS故障時,其它PCS可繼續工作,多臺PCS故障時,系統仍可保持運行。 通過并網檢測,設備可以有效評估電力系統的功率流動,加快并網檢測的速度,縮短設備投入運營的時間。
儲能集成技術路線:
拓撲方案逐漸迭代——智能組串式方案:
一包一優化、一簇一管理為提出的智能組串式方案,針對集中式方案中三個主要問題進行解決:
(1)容量衰減。傳統方案中,電池使用具有明顯的“短板效應”,電池模塊之間并聯,充電時一個電池單體充滿,充電停止,放電時一個電池單體放空,放電停止,系統的整體壽命取決于壽命短的電池。
(2)一致性。在儲能系統的運行應用中,由于具體環境不同,電池一致性存在偏差,導致系統容量的指數級衰減。
(3)容量失配。電池并聯容易造成容量失配,電池的實際使用容量遠低于標準容量。智能組串式解決方案通過組串化、智能化、模塊化的設計,解決集中式方案的上述三個問題:
(1)組串化。采用能量優化器實現電池模組級管理,采用電池簇控制器實現簇間均衡,分布式空調減少簇間溫差。
(2)智能化。將AI、云BMS等先進ICT技術,應用到內短路檢測場景中,應用AI進行電池狀態預測,采用多模型聯動智能溫控策略保證充放電狀態比較好。
(3)模塊化。電池系統模塊化設計,可單獨切離故障模組,不影響簇內其它模組正常工作。將PCS模塊化設計,單臺PCS故障時,其它PCS可繼續工作,多臺PCS故障時,系統仍可保持運行。 電站現場并網檢測設備可在復雜的電網環境下正常運行,并能夠適應不同類型電站并網檢測需求。山西精密電站現場并網檢測設備作用
現場并網檢測設備能夠對電網故障進行智能識別和定位,縮短故障恢復時間。山西精密電站現場并網檢測設備作用
儲能集成技術路線:拓撲方案逐漸迭代——集中式方案:
1500V取代1000V成為趨勢隨著集中式風光電站和儲能向更大容量發展,直流高壓成為降本增效的主要技術方案,直流側電壓提升到1500V的儲能系統逐漸成為趨勢。相比于傳統1000V系統,1500V系統將線纜、BMS硬件模塊、PCS等部件的耐壓從不超過1000V提高到不超過1500V。儲能系統1500V技術方案來源于光伏系統,根據CPIA統計,2021年國內光伏系統中直流電壓等級為1500V的市場占比約49.4%,預期未來會逐步提高至近80%。1500V的儲能系統將有利于提高與光伏系統的適配度。
回顧光伏系統發展,將直流側電壓做到1500V,通過更高的輸入、輸出電壓等級,可以降低交直流側線損及變壓器低壓側繞組的損耗,提高電站系統效率,設備(逆變器、變壓器)的功率密度提高,體積減小,運輸、維護等方面工作量也減少,有利于降低系統成本。以特變電工2016年發布的1500V光伏系統解決方案為例,與傳統1000V系統相比,1500V系統效率提升至少1.7%,初始投資降低0.1438元/W,設備數量減少30-50%,巡檢時間縮短30%。 山西精密電站現場并網檢測設備作用