無錫納吉伏公司基于鐵磁材料的三折線分段線性化模型,對自激振蕩磁通門傳感器起振原理及數學模型進行推導,并探討了其在直流測量及交直流檢測的適應性,針對自激振蕩磁通門傳感器的各項性能指標,包括線性度、量程、靈敏度、帶寬、穩定性等進行了較為深入的研究。(2)結合傳統電...
巨磁阻(GMR)效應在微小磁場測量領域實現了創新性的改變,尤其在利用渦流傳感器進行無損檢測方面取得了很大的進展。巨磁阻傳感器具有低功耗、尺寸小、高靈敏度以及頻率與靈敏度的不相關性等特點;同霍爾傳感器相同,巨磁阻芯片是傳感器的主要組成部分,一般也容易受到環境中磁...
(b)根據式(2-33)選取低磁飽和強度BS,降低鐵芯C1截面面積或增大激磁繞組匝數N1,可有效降低鐵芯C1激磁飽和電流閾值Ith,以便于滿足假設1、3中Ith<<IC。(c)可增大激磁電壓峰值Vout或降低采樣電阻Rs的阻值,以提高鐵芯回路穩態充電電流IC,...
通過對自激振蕩磁通門傳感器的起振原理及正反向直流測量時激磁電流變化過程進行詳細的分析,自激振蕩磁通門電路測量時具有如下特點:(1)自激振蕩磁通門起振時需要滿足大充電電流Im大于鐵芯C1激磁電流閾值Ith,即滿足Im>Ith。(2)鐵芯C1工作在正負交替飽和的周...
新型交直流傳感器的環節是零磁通交直流檢測器,其線性度制約了整體閉環測量方案的精度。本文設計的零磁通交直流檢測器如圖3-1所示。其包括環形鐵芯C1和C2,及激磁繞組W1,激磁繞組W2和分壓電阻R1,R2。比較放大器U1,單位反向放大器U2,采樣電阻RS1和RS2...
根據自激振蕩磁通門原理可知,通過在一個周波內對激磁電流 iex 積分計算平均激 磁電流, 再乘以采樣電阻阻值可獲取激磁電壓平均值, 即可獲得與一次電流相關的電壓 信號。但由于式(2-23)復雜, 積分計算方法數據量龐大。同時根據分析 可知, 由于一次電流 I...
(b)根據式(2-33)選取低磁飽和強度BS,降低鐵芯C1截面面積或增大激磁繞組匝數N1,可有效降低鐵芯C1激磁飽和電流閾值Ith,以便于滿足假設1、3中Ith<<IC。(c)可增大激磁電壓峰值Vout或降低采樣電阻Rs的阻值,以提高鐵芯回路穩態充電電流IC,...
傳統磁通門電流傳感器常用偶次諧波檢測法來檢測被測電流值。具體的數學模型以及測量均通過在環形磁芯上環繞激磁繞組和感應繞組來實現。根據法拉第電磁感應定律可知,感應繞組產生的感應電動勢。激勵磁場的瞬時值方向呈周期性變化,磁芯的磁導率隨激勵磁場的改變而變化,但是沒有正...
根據自激振蕩磁通門傳感器起振過程分析可知,鐵芯工作在周期性正負交替飽和狀態是磁調制過程的必要條件。倘若一次電流過大則導致鐵芯只是工作在正向磁飽和區或只是工作在負向磁飽和區,此時鐵芯單向飽和嚴重,磁化曲線嚴重畸變,無法完成電流準確測量。因此,按照一次電流磁勢與自...
偶次諧波法進行了分析,該方法簡單、有效,但是檢測電路復雜,精度較低,溫漂較大。因此為改善磁通門技術的現狀,吉林大學程福德團隊提出了時間差型磁通門,該方法有可能解決現有磁通門分辨力、測量精度難以繼續提高的問題,是磁通門研究中一個值得重視的方向; g Velasc...
值得注意的是,當激磁電壓頻率fex較小或與一次被測電流自身頻率相近時,由于電磁感應原理在激磁繞組產生工頻50Hz感應電流信號,此時在在單個激磁電流波形中,無法對有效區分頻率相近的50Hz感應電流信號和與激磁電壓頻率一致的激磁電流信號。因此自激振蕩磁通門方法對激...
當一次電流 IP>0,即為正向直流偏置,其在鐵芯 C1 中產生恒定的增磁直流磁通, 鐵芯 C1 磁化曲線將向左發生平移, 使鐵芯 C1 進入正向飽和區的閾值電流變小。 且正向 飽和閾值電流滿足 I+th1=I+th-βIp,其中 β=NP/N1 為一次繞組 ...
合理的磁屏 蔽設計可抑制外界電磁干擾, 并增強一次繞組與反饋繞組繞組之間的磁耦合程度, 以加 快新型交直流電流傳感器系統對一二次不平衡磁勢的響應速率。考慮到本電流傳感器工作于線路時,外部除了磁場干擾,電場干擾作用明顯,因此需要設計合適的電屏蔽,合理的電屏蔽可以...
根據自激振蕩磁通門傳感器激磁頻率約束條件fex>2f,當交直流電流傳感器檢測帶寬為0–50Hz時,應設計自激振蕩磁通門傳感器激磁頻率應大于100Hz。設計激磁頻率時可根據式(2-42)計算激磁頻率fex為:fex=Vout4BSN1SC(4-3)式(4-3)中...
實際電源系統中有些電流的形式比較復雜,由于電源系統中的負載特性的變化,可能會引起電流的波形的變化。復雜電流波形可以看成多個不同頻率的電流疊加而成的。常見的復雜電流有交流電流疊加一個脈動的直流電流、直流電流疊加脈沖電流和電源中的負載電流等。復雜的電流波形可以經過...
根據初始條件iex(t1)及終止條件iex(t2)可以求得時間間隔t2-t1為:t2-t1=τ2ln(2-12)在t2≤t≤t3期間,電路初始條件iex(t2)仍滿足式(2-11),且此時鐵芯C1工作由線性區A轉入正向飽和區B,激磁電感減小為l,鐵芯C1回路電...
值得注意的是,當激磁電壓頻率fex較小或與一次被測電流自身頻率相近時,由于電磁感應原理在激磁繞組產生工頻50Hz感應電流信號,此時在在單個激磁電流波形中,無法對有效區分頻率相近的50Hz感應電流信號和與激磁電壓頻率一致的激磁電流信號。因此自激振蕩磁通門方法對激...
誤差控制電路由PI環節構成,其直流開環增益越大越好,同時要求所選擇運算放大器失調電壓小,單位增益帶寬大,選用OP27G高精密運放。誤差控制電路輸出直接連接PA功率放大電路,以驅動其輸出反饋電流IF。常見的功率放大電路包括集成功率放大電路以及三極管等功率器件搭建...
在使用電壓傳感器時,需要注意以下幾點:電壓范圍:確保所選的電壓傳感器的測量范圍能夠覆蓋你所需測量的電壓范圍。過高的電壓可能會損壞傳感器,而過低的電壓可能導致測量不準確。安裝位置:將電壓傳感器安裝在合適的位置,遠離高溫、潮濕、腐蝕性氣體等環境,以免影...
電流傳感器在新能源汽車中有多個重要應用。以下是一些常見的應用: 電池管理系統(Battery Management System,簡稱BMS):電池是新能源汽車的重要部件之一,而電流傳感器在BMS中起著關鍵作用。它用于測量電池充電和放電過程中的電流變化,以監測...
同理,雙鐵芯結構下,由于反饋繞組同時均勻繞制在兩環形鐵芯C1及C2上,可以對鐵芯C1,C2列寫磁勢方程可以得到:C1:NPIP+NFIF+N1Iex1=0C2:NPIP+NFIF+N2Iex2=0(3-5)(3-6)單獨看式(3-4),與其式(3-5)及式(3...
為了降低直流分量對電能計量的影響及避免直流分量對交流電力設備造成損害,在 不影響交流測量精度的同時,能對直流分量進行監測,是智能配網對新一代電流測量設 備的新需求。中國電網公司在 2016 年 9 月,其運維檢修部門組織編寫了《10kV 一體化 柱上變電和配電...
當測量交直流電流時,環形鐵芯C1處于正向激磁狀態,在采樣電阻RS1上將產生正比于一次交直流電流的有用低頻信號VL1,包括直流分量信號Vdc及工頻交流信號Vfac,同時也會產生高頻無用交流分量VH1。由于環形鐵芯C2激磁狀態與鐵芯C1完全相反,因此在采樣電阻RS...
激磁電壓信號Vex在一個周波內表達式為:(|Vout,0<t<TpVex=〈|l-Vout,Tp<t<Tp+TN其中TP=t3,在正向周波內,根據在線性區及各飽和區的時間間隔表達式(2-8)、(2-12)、(2-16)可以求得,正半波時間TP滿足下式:TP=t...
不同于傳統電流比較儀的是,新型交直流電流傳感器改進了鐵芯結構及信號解調電 路, 增加了環形鐵芯 C2 及對其進行激磁的是反向放大器 U2,其與環形鐵芯 C1 及采樣電 阻 RS1 構成反向激磁的自激振蕩磁通門傳感器,其作用是用于抵消激磁電壓在其他繞組 中產生的...
鐵芯 C1 的非線性是影響自激振蕩磁通門電路正常運行的主要因素。在探究鐵芯 C1 非線性特性時常用簡易的三折線模型分析,三折線模型忽略了鐵芯 C1 磁滯效應并對復 雜的磁化曲線進行分段線性化,鐵芯 C1 磁化曲線及簡化模型見圖 2-2。圖中主要參數 HC 為...
紅色曲線為 0.05 級交流電流互感器比差和角差誤差限值曲線, 黃色曲線為 50A 直流下交流比差和角差誤差曲線,黑色曲線為 20A 直流下交流比差和 角差誤差曲線。 由 5-7 ,5-8 可知,在 20A 及 50A 直流分量下, 新型交直流電流傳感 器比差...
國外關于直流分量對電力變壓器影響研究頗多,直流分量的存在對于電力變壓器鐵芯的影響與電磁式電流互感器影響關注點略有不同,直流分量會導致電力變壓器鐵芯及其附近產生溫升,同時在設備殼體監測到振動現象,均嚴重危害其正常運行。1989年,更是由于地磁感應直流導致電網變壓...
無錫納吉伏公司結合自激振蕩磁通門技術與傳統電流比較儀結構,設計了新型交直流電流傳感器。通過分析新型交直流傳感器的誤差來源,對傳統單鐵芯自激振蕩磁通門傳感器進行改進,提出了雙鐵芯結構自激振蕩磁通門傳感器,同時對解調電路進行了優化。并建立了新型交直流電流傳感器穩態...
假設1:Im<<IC,Ith<<IC,βIp<<IC,對ln函數進行化簡,簡化了TP與TN表達式。假設2:在線性區A激磁電感L遠大于飽和區B、C激磁電感l,因此τ2>>τ1,略去了τ1項時間,得到簡化的激磁電壓周期公式。假設3:βIp<<IC,略去了βIp項,...