云計算和邊緣計算在不同應用場景下具有各自的優勢。云計算通常適用于需要大規模數據處理和分析的場景,如大數據分析、機器學習、科學計算等。這些場景通常對計算資源的需求較高,且對實時性要求相對較低。云計算通過提供虛擬化的數據中心和彈性的計算能力,為用戶提供了高效、可擴展的計算服務。而邊緣計算則更適用于需要快速響應和低延遲的場景,如自動駕駛、遠程醫療、智能家居等。這些場景通常對實時性要求較高,且需要處理大量實時數據。邊緣計算通過在網絡邊緣進行數據處理和分析,明顯降低了網絡延遲,為這些應用場景提供了強有力的支持。邊緣計算正在改變我們對數據隱私的認知。廣東倍聯德邊緣計算使用方向物聯網設備眾多,數據傳輸頻繁,...
在邊緣節點上使用緩存技術,存儲經常訪問的數據,可以減少對云數據中心的查詢,從而降低延遲。分布式緩存技術使得數據可以在多個邊緣節點之間共享,進一步提高了數據訪問的效率和可靠性。例如,在智能交通系統中,車輛傳感器數據可以在邊緣節點上進行緩存,以減少對云端的頻繁查詢,提高實時響應速度。在邊緣節點上執行實時分析,并根據分析結果在本地做出決策,無需將所有數據發送到云端,可以明顯降低數據傳輸量。例如,在自動駕駛汽車中,車載傳感器數據可以在邊緣節點上進行實時分析,用于車輛控制、路徑規劃和碰撞預警等任務,而無需將所有數據上傳到云端進行處理。這種本地決策制定的方式不僅提高了實時性,還減少了數據傳輸的延遲和帶寬消...
邊緣計算作為一種分布式IT架構,正在逐步成為企業戰略的中心。它將數據處理、分析和智能盡可能地靠近生成數據的端點,從而提供快速響應和低延遲的服務。隨著聯網設備的增長以及從數據中獲取洞察力的迫切需求,邊緣計算的應用場景和市場規模都在不斷擴大。邊緣設備通常具有有限的計算和存儲資源,這限制了它們在處理大規模數據或復雜計算任務時的能力。為了克服這一挑戰,異構計算架構應運而生。通過結合CPU、GPU、NPU等不同的計算單元,針對不同的計算任務進行優化,從而提升整體計算效率。這種架構能夠充分利用不同計算單元的優勢,提高邊緣設備的處理能力。邊緣計算正在成為未來數字化轉型的重要驅動力。廣東專業邊緣計算使用方向邊...
邊緣計算使得物聯網系統能夠在網絡不穩定或中斷的情況下繼續運行。當云端服務器出現故障或網絡連接受限時,邊緣設備仍然可以單獨進行數據處理和分析,保證系統的可靠性和穩定性。這對于需要持續監控和控制的應用場景,如工業自動化、遠程監控等,具有重要意義。邊緣計算通過提供本地的數據處理能力,確保了系統在關鍵時刻的穩定運行。未來,邊緣計算將與云計算實現深度融合,實現更加智能化、標準化和安全的計算服務,為物聯網技術的發展和應用普及提供強大動力。邊緣計算使智能農業更加精確和高效。上海復雜環境邊緣計算軟件在傳統的云計算模式中,用戶的數據請求需要通過網絡傳輸到遠離用戶的遠程數據中心進行處理,處理完后再將結果傳回用戶設...
邊緣計算能夠在網絡邊緣進行實時數據處理和分析,為需要快速響應的應用場景提供了強有力的支持。這種高實時性特性使得邊緣計算在自動駕駛、遠程醫療等領域具有明顯優勢。邊緣計算通過分布式部署和本地數據處理,明顯提高了數據處理效率,降低了網絡負載和帶寬需求。這對于物聯網設備眾多、數據傳輸頻繁的場景具有明顯的經濟效益。邊緣計算在本地對數據進行加密和認證,增強了數據的安全性和隱私保護。同時,邊緣計算的分布式特性也提高了系統的整體抗攻擊能力。邊緣計算正在改變我們對數據中心的運營和管理方式。廣東專業邊緣計算服務器多少錢通過這樣的架構,邊緣計算能夠實現數據的實時處理和分析,降低延遲,滿足物聯網、移動計算等應用場景的...
通過這樣的架構,邊緣計算能夠實現數據的實時處理和分析,降低延遲,滿足物聯網、移動計算等應用場景的需求。例如,在智能家居中,傳感器數據可以在邊緣節點上進行初步處理,只將關鍵數據上傳到云端,從而減少了數據傳輸量和帶寬消耗。在數據源附近對數據進行初步過濾和預處理,只傳輸有價值的數據到云端或數據中心,是邊緣計算優化數據傳輸效率的重要手段。數據過濾可以去除無關或冗余的數據,減少不必要的數據傳輸。預處理則包括數據清洗、壓縮和聚合等操作,以提高數據傳輸的效率和準確性。例如,在智能制造領域,傳感器數據可以在邊緣節點上進行清洗和壓縮,只將關鍵參數和異常數據上傳到云端進行進一步分析。邊緣計算有助于減少數據中心的流...
在邊緣節點上使用緩存技術,存儲經常訪問的數據,可以減少對云數據中心的查詢,從而降低延遲。分布式緩存技術使得數據可以在多個邊緣節點之間共享,進一步提高了數據訪問的效率和可靠性。例如,在智能交通系統中,車輛傳感器數據可以在邊緣節點上進行緩存,以減少對云端的頻繁查詢,提高實時響應速度。在邊緣節點上執行實時分析,并根據分析結果在本地做出決策,無需將所有數據發送到云端,可以明顯降低數據傳輸量。例如,在自動駕駛汽車中,車載傳感器數據可以在邊緣節點上進行實時分析,用于車輛控制、路徑規劃和碰撞預警等任務,而無需將所有數據上傳到云端進行處理。這種本地決策制定的方式不僅提高了實時性,還減少了數據傳輸的延遲和帶寬消...
物聯網設備眾多,數據傳輸頻繁,這對網絡負載和帶寬提出了巨大挑戰。邊緣計算通過在本地處理數據,減少了需要傳輸到云端的數據量,從而降低了網絡負載和帶寬需求。這對于智慧城市、智能家居等物聯網應用場景具有明顯的經濟效益。在智慧城市中,邊緣計算技術可以助力交通管理系統實時分析和處理交通數據,提供即時且準確的交通狀況信息,為路況調整提供有力支持。同時,邊緣計算還能減少數據的遠程傳輸,降低數據泄露的風險,增強數據的安全性。邊緣計算為智能制造提供了實時、高效的數據處理能力。上海mec邊緣計算設備隨著物聯網設備的普及和5G通信技術的普遍應用,越來越多的設備需要接入網絡并進行數據傳輸和處理。自動駕駛汽車需要實時感...
自動駕駛技術要求系統能夠在極短的時間內做出反應,以保證行車安全。傳統的云計算模式難以滿足這一實時性要求,因為數據從車載傳感器到云端的傳輸延遲可能會影響系統的響應速度。邊緣計算則可以將數據處理任務直接部署到車載設備上,保證車輛在行駛過程中能夠實現快速決策。同時,云計算則可以對車輛產生的海量數據進行深度學習和模型訓練,提升自動駕駛系統的智能化水平。這種結合邊緣計算和云計算的方式,不僅提高了自動駕駛系統的實時性和可靠性,還降低了數據傳輸的成本和延遲。邊緣計算設備的能效比傳統設備有了明顯提升。深圳工業自動化邊緣計算定制開發不同應用場景產生的數據量和類型差異明顯。例如,物聯網設備可能產生大量傳感器數據,...
隨著科技的飛速發展,特別是物聯網(IoT)、5G通信和人工智能(AI)技術的普遍應用,數據的生成、傳輸和處理需求呈現出爆破式增長。傳統的云計算模式,即將所有數據傳輸到遠離用戶的遠程數據中心進行處理,已難以滿足日益增長的低延遲需求。在此背景下,邊緣計算作為一種新興的計算模式應運而生,它通過在網絡邊緣進行數據處理和分析,明顯降低了網絡延遲,為各種實時性要求高的應用場景提供了強有力的支持。邊緣計算是一種分布式計算架構,其中心思想是將計算、存儲和數據處理任務從云端推向靠近數據源的設備或網絡邊緣。這種架構的提出,旨在解決傳統云計算模式下數據傳輸延遲高、帶寬消耗大等問題。邊緣計算使得數據可以在源頭附近被快...
邊緣云作為邊緣計算的關鍵要素,正在快速發展。邊緣云承下對接物聯網硬件等基礎設施,向上通過計算服務支撐各行各業應用。隨著邊緣云的不斷發展,它將為邊緣計算提供更多的計算資源和存儲能力,從而推動邊緣計算的應用和發展。物聯網是邊緣計算需求很旺盛的場景之一。隨著物聯網設備的不斷增長,邊緣計算的需求也在不斷增加。物聯網設備包括智能電器、智能手機、可穿戴設備等,它們產生的數據量巨大,需要邊緣計算進行實時處理和分析。邊緣計算可以提供低延遲、高可靠性的服務,從而滿足物聯網設備的需求。邊緣計算正在成為未來數字化轉型的重要驅動力。廣東主流邊緣計算質量隨著醫療健康設備的普及,個人健康數據的采集和處理已經成為一種常態。...
在能源領域,邊緣計算的應用也非常普遍。石油和能源相關行業傳統上依賴于收集和傳輸數據到通常非常遙遠的觀察中心。然而,隨著邊緣計算的發展,這些行業可以在本地處理和分析數據,從而提高工作效率和安全性。邊緣計算面臨的技術挑戰主要包括資源受限、網絡帶寬和延遲限制、數據安全和隱私保護等。為了解決這些挑戰,需要采用異構計算架構、輕量級算法和模型、分布式數據管理等技術。此外,還需要優化網絡基礎設施,提高數據傳輸速度和效率。邊緣計算的發展需要不斷優化的算法和硬件支持。行動邊緣計算服務機構邊緣計算為物聯網應用提供了更多的可能性。通過在網絡邊緣進行數據處理和分析,可以支持更普遍的應用場景,特別是那些對實時性要求高、...
隨著物聯網技術的不斷發展,邊緣計算將在更多領域得到應用。未來,邊緣計算將呈現出以下幾個發展趨勢:邊緣計算和云計算將實現更加緊密的融合,形成云邊協同的計算架構。這種架構將充分利用云計算的集中處理能力和邊緣計算的分布式處理能力,為用戶提供更加高效、智能和安全的計算服務。邊緣計算將不斷融入人工智能、機器學習等先進技術,實現更加智能化的數據處理和分析。這將為物聯網應用提供更加精確、高效的決策支持。隨著邊緣計算技術的不斷成熟和應用場景的拓展,將推動相關標準和規范的制定和完善。這將有助于實現不同邊緣設備之間的互操作和協同工作,促進邊緣計算在物聯網中的普遍應用。邊緣計算正在成為5G網絡的重要支撐技術。廣東邊...
自動駕駛技術要求系統能夠在極短的時間內做出反應,以保證行車安全。傳統的云計算模式難以滿足這一實時性要求,因為數據從車載傳感器到云端的傳輸延遲可能會影響系統的響應速度。邊緣計算則可以將數據處理任務直接部署到車載設備上,保證車輛在行駛過程中能夠實現快速決策。同時,云計算則可以對車輛產生的海量數據進行深度學習和模型訓練,提升自動駕駛系統的智能化水平。這種結合邊緣計算和云計算的方式,不僅提高了自動駕駛系統的實時性和可靠性,還降低了數據傳輸的成本和延遲。邊緣計算為AR/VR應用提供了流暢的交互體驗。上海移動邊緣計算質量延時性是衡量計算模式性能的重要指標之一。在云計算模式下,由于數據需要在網絡中進行長距離...
邊緣計算與云計算在計算方式、處理位置、延時性、數據存儲、部署成本、隱私安全以及應用場景等方面均存在明顯差異。云計算作為集中式計算模式,適用于大規模數據處理和分析的場景;而邊緣計算作為分布式計算模式,則更適用于需要快速響應和低延遲的場景。兩者各有優勢,互為補充,共同推動著信息技術的不斷發展和創新。在未來,隨著物聯網、5G通信和人工智能等技術的不斷發展和普及,邊緣計算和云計算的融合將成為一種趨勢。通過將云計算的集中處理能力和邊緣計算的分布式處理能力相結合,可以實現更加高效、智能和安全的計算服務。這種融合將為用戶帶來更加豐富的應用場景和更加完善的使用體驗,推動信息技術的不斷發展和創新。邊緣計算為游戲...
邊緣計算涉及多個供應商、平臺和設備,缺乏統一的標準和互操作性會給應用開發和部署帶來困難。為了推動邊緣計算的發展,需要加強標準化工作,推動技術的標準化和互操作性。這將有助于降低開發成本,提高應用的可移植性和可擴展性。邊緣計算作為一種新型的計算架構,正在逐步成為企業戰略的中心。隨著技術的不斷進步和應用場景的不斷拓展,邊緣計算將在更多行業中得到應用。然而,邊緣計算也面臨著一些挑戰,包括技術挑戰、管理挑戰和安全挑戰等。為了解決這些挑戰,需要采用先進的技術和解決方案,加強標準化工作,推動技術的標準化和互操作性。未來,邊緣計算將在更多領域發揮重要作用,為企業和社會帶來更多的價值。邊緣計算正在推動工業互聯網...
邊緣計算通過將數據處理和分析任務從云端遷移到網絡邊緣的設備或節點,明顯優化了數據傳輸效率。通過數據過濾、預處理、分布式緩存、本地決策制定、模型壓縮和優化、智能路由和負載均衡、異步通信以及邊緣協同等策略,邊緣計算不僅降低了數據傳輸的延遲和帶寬消耗,還提高了系統的實時性和可靠性。在實際應用中,邊緣計算在智能制造、自動駕駛、智慧城市和醫療健康等領域展現了巨大的潛力和優勢。然而,邊緣計算也面臨著設備計算能力限制、數據隱私和安全性以及標準化和互操作性等挑戰。隨著技術的不斷進步和應用場景的拓展,邊緣計算將在未來的數字化轉型中發揮更加重要的作用。邊緣計算使得視頻監控系統可以實時分析并響應異常情況。深圳工業自...
邊緣計算涉及大量的數據傳輸和處理,如何確保數據在傳輸和存儲過程中的安全性和隱私保護是一個重要挑戰。分布式數據管理技術的發展,通過構建數據采集、處理、匯聚、分析、存儲、管理等全環節能力,實現業務生產、應用數據,經營、運營管理數據,第三方數據的統一匯聚和分析。這將有助于發揮數據要素價值,提升業務效益。邊緣計算的性能受限于網絡帶寬和延遲。為了提升數據傳輸速度和效率,需要采用更先進的網絡技術,如5G或Wi-Fi 6。這些技術能夠提供更高的帶寬和更低的延遲,從而支持邊緣計算的發展。邊緣計算使得數據可以在源頭附近被快速處理。廣東ARM邊緣計算盒子邊緣云作為邊緣計算的關鍵要素,正在快速發展。邊緣云承下對接物...
云計算和邊緣計算在不同應用場景下具有各自的優勢。云計算通常適用于需要大規模數據處理和分析的場景,如大數據分析、機器學習、科學計算等。這些場景通常對計算資源的需求較高,且對實時性要求相對較低。云計算通過提供虛擬化的數據中心和彈性的計算能力,為用戶提供了高效、可擴展的計算服務。而邊緣計算則更適用于需要快速響應和低延遲的場景,如自動駕駛、遠程醫療、智能家居等。這些場景通常對實時性要求較高,且需要處理大量實時數據。邊緣計算通過在網絡邊緣進行數據處理和分析,明顯降低了網絡延遲,為這些應用場景提供了強有力的支持。邊緣計算使得遠程教育中的實時互動成為可能。智慧交通邊緣計算代理商云計算的處理位置集中在云端數據...
隨著物聯網應用的不斷深入,數據安全與隱私保護將成為邊緣計算發展的重要方向。未來,邊緣計算將更加注重數據的安全性和隱私保護,采用更加先進的技術手段確保數據的安全傳輸和處理。邊緣計算在物聯網中發揮著至關重要的作用。它降低了網絡延遲,提高了數據處理效率;減輕了網絡負載,降低了帶寬需求;增強了數據安全與隱私保護;提高了系統可靠性與穩定性;并推動了物聯網應用的創新與發展。盡管面臨諸多挑戰,但隨著技術的不斷進步和應用場景的拓展,邊緣計算有望在物聯網領域發揮更加關鍵的作用。邊緣計算正在成為未來智慧城市的重要技術之一。廣東醫療系統邊緣計算報價通過這樣的架構,邊緣計算能夠實現數據的實時處理和分析,降低延遲,滿足...
邊緣計算與云計算在計算方式、處理位置、延時性、數據存儲、部署成本、隱私安全以及應用場景等方面均存在明顯差異。云計算作為集中式計算模式,適用于大規模數據處理和分析的場景;而邊緣計算作為分布式計算模式,則更適用于需要快速響應和低延遲的場景。兩者各有優勢,互為補充,共同推動著信息技術的不斷發展和創新。在未來,隨著物聯網、5G通信和人工智能等技術的不斷發展和普及,邊緣計算和云計算的融合將成為一種趨勢。通過將云計算的集中處理能力和邊緣計算的分布式處理能力相結合,可以實現更加高效、智能和安全的計算服務。這種融合將為用戶帶來更加豐富的應用場景和更加完善的使用體驗,推動信息技術的不斷發展和創新。邊緣計算正在改...
邊緣計算在客戶體驗領域也發揮著重要作用。利用邊緣計算的低延遲特性,企業可以提供更好的客戶體驗。例如,迪士尼等企業集團正在使用物聯網傳感器和邊緣計算來快速傳輸游樂設施的性能數據,并利用這些數據進行調整,以優化游樂設施和景點。此外,邊緣計算還可以幫助營銷人員和企業幾乎實時地處理客戶的數據,從而建立更多個性化和互動的客戶體驗。醫療保健行業是邊緣計算應用的另一個重要領域。大型醫院意識到,將醫療傳感器、電子健康記錄和數字成像系統等數據放在身邊,而不是將它們推到云端,對運營更有利。邊緣計算可以提供實時數據處理和分析能力,從而支持醫療保健行業的決策和運營。邊緣計算正在改變我們對數據處理的未來展望。北京專業邊...
云計算平臺通常具備良好的可擴展性,用戶可以根據業務需求快速增加或減少計算資源,避免了傳統計算環境下的資源浪費和過度預留問題。邊緣計算則是一種分布式計算模式,它將計算和數據存儲資源部署在靠近數據源或用戶的網絡邊緣側。這種架構允許在靠近用戶的物理位置實時處理應用程序,無需將數據發送到云端或推送到中間數據中心。邊緣計算通過融合網絡、計算、存儲、應用重要能力,就近提供邊緣智能服務,滿足行業數字化在敏捷連接、實時業務、數據優化、應用智能、安全與隱私保護等方面的關鍵需求。邊緣計算正在成為智慧城市的重要基礎設施。廣東前端小模型邊緣計算應用場景隨著科技的飛速發展,特別是物聯網(IoT)、5G通信和人工智能(A...
邊緣計算技術的性能直接影響數據處理效率和實時響應能力。因此,性能評估是選型過程中的關鍵環節。邊緣計算設備需具備高效的計算能力,以支持實時數據處理和分析。這包括CPU、GPU、NPU等計算單元的性能評估。企業應根據應用場景的數據處理需求,選擇具有足夠計算能力的邊緣設備。邊緣設備通常需要在本地存儲一定量的數據,以支持離線處理和數據分析。因此,存儲能力也是選型時需要考慮的重要因素。企業需根據數據量大小、存儲介質(如SSD、HDD)以及數據讀寫速度等要求,選擇合適的存儲設備。邊緣計算正在改變我們對分布式系統的看法。廣東倍聯德邊緣計算盒子價格隨著醫療健康設備的普及,個人健康數據的采集和處理已經成為一種常...
在傳統的云計算模式中,用戶的數據請求需要通過網絡傳輸到遠離用戶的遠程數據中心進行處理,處理完后再將結果傳回用戶設備。這個過程中,網絡傳輸的延遲、數據中心的處理延遲以及結果回傳的延遲共同構成了網絡延遲的主要部分。而在邊緣計算中,計算任務被推向網絡邊緣,數據處理在本地或靠近用戶的位置進行,從而明顯縮短了數據傳輸的距離,降低了網絡延遲。邊緣計算還可以通過優化網絡協議和算法來降低網絡延遲。例如,通過優化數據傳輸協議,可以減少數據包的丟失和重傳,從而提高數據傳輸的效率;通過優化任務調度算法,可以合理分配計算任務到各個邊緣設備上,避免設備之間的負載不均衡導致延遲增加。邊緣計算的發展為區塊鏈應用提供了新場景...
在信息技術飛速發展的現在,云計算和邊緣計算作為兩種重要的計算模式,正在深刻改變著數據處理和應用部署的方式。雖然兩者都旨在提供高效、可擴展的計算服務,但它們的工作原理、應用場景以及所帶來的優勢卻截然不同。云計算是一種集中式計算模式,其重心在于將所有數據上傳至計算資源集中的云端數據中心或服務器進行處理。在這種模式下,用戶無需關心物理設備的具體配置和維護,只需通過互聯網按需獲取和使用計算資源。邊緣計算則是一種分布式計算模式,它將計算和數據存儲資源部署在靠近數據源或用戶的網絡邊緣側。邊緣計算為AR/VR應用提供了流暢的交互體驗。深圳專業邊緣計算解決方案自動駕駛技術要求系統能夠在極短的時間內做出反應,以...
隨著物聯網設備的普及和5G通信技術的普遍應用,越來越多的設備需要接入網絡并進行數據傳輸和處理。傳統的云計算模式在處理大規模設備接入時可能會遇到瓶頸,導致延遲增加。而邊緣計算則能夠支持大規模設備的接入和處理。通過將計算任務分散到各個邊緣設備上進行,邊緣計算可以充分利用設備的計算能力,提高系統的處理效率。這使得邊緣計算在處理大規模設備接入時具有更低的延遲和更高的可靠性。邊緣計算在網絡延遲方面具有明顯的優勢。通過將數據處理和分析任務推向網絡邊緣,邊緣計算明顯降低了網絡延遲,提高了系統的實時響應能力、帶寬利用率和系統可靠性。邊緣計算正在改變我們對實時數據分析的理解。邊緣計算隨著物聯網設備的普及和5G通...
數據安全與隱私保護是物聯網應用中不可忽視的問題。邊緣計算通過在本地對數據進行加密和認證,進一步保護數據的隱私。敏感數據無需離開本地環境就可以被處理,這極大減少了數據在傳輸過程中被截獲或泄露的風險。對于涉及個人隱私或企業敏感數據的應用場景,如智慧醫療、金融物聯網等,邊緣計算提供了更高的安全保障。此外,邊緣計算的分布式特性也意味著攻擊者很難通過單點攻擊來控制整個系統,增強了物聯網系統的整體抗攻擊能力。邊緣計算的發展需要跨行業的合作與協同。北京復雜環境邊緣計算生態云計算和邊緣計算在不同應用場景下具有各自的優勢。云計算通常適用于需要大規模數據處理和分析的場景,如大數據分析、機器學習、科學計算等。這些場...
邊緣計算將數據處理和分析任務推向網絡邊緣,使得數據可以在本地或靠近用戶的位置進行實時或近實時的處理。這種處理方式明顯降低了網絡延遲,提高了系統的實時響應能力。對于需要實時響應的應用場景,如自動駕駛、遠程手術、在線游戲等,邊緣計算的低延遲特性至關重要。這些應用場景要求系統能夠在極短的時間內做出反應,以保證安全性和用戶體驗。邊緣計算通過降低網絡延遲,為這些應用場景提供了可靠的技術支持。邊緣計算通過在網絡邊緣進行數據處理和分析,減少了需要傳輸到遠程數據中心的數據量邊緣計算正在成為數字孿生技術的重要基石。北京復雜環境邊緣計算一般多少錢在部署成本方面,云計算和邊緣計算也存在明顯差異。云計算通常由大型數據...
根據IDC的《全球邊緣支出指南》,2024年全球在邊緣計算方面的支出將達到2280億美元,比2023年增長了14%。未來幾年將繼續保持強勁增長勢頭,預計到2028年支出將接近3780億美元。這表明邊緣計算市場正在不斷擴大,企業和服務提供商對邊緣計算的投資正在增加。邊緣計算的應用場景正在不斷拓展。從物聯網、智能制造到智慧城市、自動駕駛等領域,邊緣計算都在發揮著重要作用。隨著技術的不斷進步和應用場景的不斷拓展,邊緣計算將在更多行業中得到應用。例如,在醫療行業中,邊緣計算可以幫助跟蹤不斷變化的數據集和遠程監控設施;在能源行業中,邊緣計算可以提高工作場所的安全性。邊緣計算正在推動能源行業的數字化轉型。...