普通晶閘管的開關電流已達數千安,能承受的正、反向工作電壓達數千伏。在此基礎上,為適應電力電子技術發展的需要,又開發出門極可關斷晶閘管、雙向晶閘管、光控晶閘管、逆導晶閘管等一系列派生器件,以及單極型MOS功率場效應晶體管、雙極型功率晶體管、靜電感應晶閘管、功能組合模塊和功率集成電路等新型電力電子器件。各種電力電子器件均具有導通和阻斷兩種工作特性。功率二極管是二端(陰極和陽極)器件,其器件電流由伏安特性決定,除了改變加在二端間的電壓外,無法控制其陽極電流,故稱不可控器件。普通晶閘管是三端器件,其門極信號能控制元件的導通,但不能控制其關斷,稱半控型器件。可關斷晶閘管、功率晶體管等器件,其門極信號既能件的導通,又能控制其關斷,稱全控型器件。后兩類器件控制靈活,電路簡單,開關速度53c3db0-ae2b-4474-a84d-2a于整流、逆變、斬波電路中,是電動機調速、發電機勵磁、感應加熱、電鍍、電解電源、直接輸電等電力電子裝置中的部件。這些器件構成裝置不僅體積小、工作可靠,而且節能效果十分明顯(一般可節電10%~40%)。單個電力電子器件能承受的正、反向電壓是一定的,能通過的電流大小也是一定的。電子技術研究的是電子器件及其電子器件構成的電路的應用。湖州無線電子技術推薦咨詢
由單個電力電子器件組成的電力電子裝置容量受到限制。所以,在實用中多用幾個電力電子器件串聯或并聯形成組件,其耐壓和通流的能力可以成倍地提高,從而可極大地增加電力電子裝置的容量。器件串聯時,希望各元件能承受同樣的正、反向電壓;并聯時則希望各元件能分擔同樣的電流。但由于器件的個異性,串、并聯時,各器件并不能完全均勻地分擔電壓和電流。所以,在電力電子器件串聯時,要采取均壓措施;在并聯時,要采取均流措施。電力電子器件工作時,會因功率損耗引起器件發熱、升溫。器件溫度過高將縮短壽命,甚至燒毀,這是限制電力電子器件電流、電壓容量的主要原因。為此,必須考慮器件的冷卻問題。常用冷卻方式有自冷式、風冷式、液冷式(包括油冷式、水冷式)和蒸發冷卻式等。電力電子器件正沿著大功率化、高頻化、集成化的方向發展。80年代晶閘管的電流容量已達6000安,阻斷電壓高達6500伏。但這類器件工作頻率較低。提高其工作頻率,取決于器件關斷期間如何加快基區少數載流子(簡稱少子)的復合速度和經門極抽取更多的載流子。降低少子壽命雖能有效地縮短關斷電流的過程,卻導致器件導通期正向壓降的增加。因此必須兼顧轉換速度和器件通態功率損耗的要求。靜安區電子技術常見問題電子技術是對電子信號進行處理的技術,處理的方式主要有:信號的發生、放大、濾波、轉換。
1906年美國人德福雷斯特發明真空三極管,用來放大電話的聲音電流。此后,人們強烈地期待著能夠誕生一種固體器件,用來作為質量輕、價廉和壽命長的放大器和電子開關。1947年,點接觸型鍺晶體管的誕生,在電子器件的發展史上翻開了新的一頁。但是,這種點接觸型晶體管在構造上存在著接觸點不穩定的致命弱點。在點接觸型晶體管開發成功的同時,結型晶體管論就已經提出,但是直至人們能夠制備超高純度的單晶以及能夠任意控制晶體的導電類型以后,結型晶體管材真正得以出現。1950年,具有使用價值的早的鍺合金型晶體管誕生。1954年,結型硅晶體管誕生。此后,人們提出了場效應晶體管的構想。隨著無缺陷結晶和缺陷控制等材料技術、晶體外誕生長技術和擴散摻雜技術、耐壓氧化膜的制備技術、腐蝕和光刻技術的出現和發展,各種性能優良的電子器件相繼出現,電子元器件逐步從真空管時代進入晶體管時代和大規模、超大規模集成電路時代。逐步形成作為高技術產業的半導體工業。由于社會發展的需要,電子裝置變的越來越復雜,這就要求了電子裝置必須具有可靠性、速度快、消耗功率小以及質量輕、小型化、成本低等特點。自20世紀50年代提出集成電路的設想后。
模擬)電子技術和Digital(數字)電子技術。電子技術是對電子信號進行處理的技術,處理的方式主要有:信號的發生、放大、濾波、轉換。電子技術是十九世紀末到二十世紀初開始發展起來的新興技術,二十世紀發展迅速,應用,成為近代科學技術發展的一個重要標志。在十八世紀末和十九世紀初的這個時期,由于生產發展的需要,在電磁現象方面的研究工作發展得很快,1785年法國科學家庫倫由實驗得出電荷的庫侖定律。1895年,荷蘭物理學家亨得里克·安頓·洛倫茲假定了電子存在。1897年,英國物理學家湯姆遜()用試驗找出了電子。1904年,英國人發明了簡單的二極管(diode或valve),用于檢測微弱的無線電信號。1906年,在二極管中安上了第三個電極(柵極,grid)發明了具有放大作用的三極管,這是電子學早期歷史中重要的里程碑。1948年美國貝爾實驗室的幾位研究人員發明晶體管。1958年集成電路的個樣品見諸于世。集成電路的出現和應用,標志著電子技術發展到了一個新的階段。電子產品電子技術研究的是電子器件及其電子器件構成的電路的應用。半導體器件是構成各種分立、集成電子電路基本的元器件。隨著電子技術的飛速發展,各種新型半導體器件層出不窮。半導體器件是構成各種分立、集成電子電路基本的元器件。
80年代這類器件的高工作頻率在10千赫以下。雙極型大功率晶體管可以在100千赫頻率下工作,其控制電流容量已達數百安,阻斷電壓1千多伏,但維持通態比其他功率可控器件需要更大的基極驅動電流。由于存在熱激發二次擊穿現象,限制它的抗浪涌能力。進一步提高其工作頻率仍然受到基區和集電區少子儲存效應的影響。70年代中期發展起來的單極型MOS功率場效應晶體管,由于不受少子儲存效應的限制,能夠在兆赫以上的頻率下工作。這種器件的導通電流具有負溫度特性,不易出現熱激發二次擊穿現象;需要擴大電流容量時,器件并聯簡單,且具有較好的線性輸出特性和較小的驅動功率;在制造工藝上便于大規模集成。但它的通態壓降較大,制造時對材料和器件工藝的一致性要求較高。到80年代中、后期電流容量達數十安,阻斷電壓近千伏。從60年代到70年代初期,以半控型普通晶閘管為的電力電子器件,主要用于相控電路。這些電路十分地用在電解、電鍍、直流電機傳動、發電機勵磁等整流裝置中,與傳統的汞弧整流裝置相比,不僅體積小、工作可靠,而且取得了十分明顯的節能效果(一般可節電10~40%,從中國的實際看,因風機和泵類負載約占全國用電量的1/3,若采用交流電動機調速傳動。因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同。黃浦區電子技術服務
因通信容量的不斷增加,通信電源容量也將不斷增加。湖州無線電子技術推薦咨詢
模擬集成電路設計主要是通過有經驗的設計師進行手動的電路調試,模擬而得到,與此相對應的數字集成電路設計大部分是通過使用硬件描述語言在EDA軟件的控制下自動的綜合產生。電子元器件數字集成電路是將元器件和連線集成于同一半導體芯片上而制成的數字邏輯電路或系統。根據數字集成電路中包含的門電路或元器件數量,可將數字集成電路分為小規模集成(SSI)電路、中規模集成(MSI)電路、大規模集成(LSI)電路、超大規模集成(VLSI)電路和特大規模集成(ULSI)電路。小規模集成電路包含的門電路在10個以內,或元器件數不超過100個;中規模集成電路包含的門電路在10-100個之間,或元器件數在100-1000個之間;大規模集成電路包含的門電路在100個以上,或元器件數在10-10個之間;超大規模集成電路包含的門電路在1萬個以上,或元器件數在10-10之間;特大規模集成電路的元器件數在10-10之間。它包括:基本邏輯門、觸發器、寄存器、譯碼器、驅動器、計數器、整形電路、可編程邏輯器件、微處理器、單片機、DSP等。電子技術是根據電子學的原理,運用電子元器件設計和制造某種特定功能的電路以解決實際問題的科學,包括信息電子技術和電力電子技術兩大分支。信息電子技術包括Analog。湖州無線電子技術推薦咨詢
上海漫璟電子科技有限公司位于曹楊路1017號1幢三樓3096室 ,擁有一支專業的技術團隊。在上海漫璟近多年發展歷史,公司旗下現有品牌富士施樂,夏普,惠普等。我公司擁有強大的技術實力,多年來一直專注于計算機、電子科技專業領域內的技術開發、技術轉讓、技術咨詢、技術服務,計算機網絡工程,網頁設計,電腦圖文設計、制作,電腦維修,自有設備租賃、維修,銷售:計算機軟硬件及輔助設備、電子產品、通信設備及器材(除衛星電視廣播地面接收設施)、辦公設備、家具、日用百貨、數碼產品、五金交電。的發展和創新,打造高指標產品和服務。上海漫璟始終以質量為發展,把顧客的滿意作為公司發展的動力,致力于為顧客帶來高品質的復印機,打印機,耗材碳粉,硒鼓粉盒。