目標運動估計是根據目標在過去的位置對目標的運動規律加以總結,并以此對目標將來的運動狀態進行預測。正確的預測,可以縮小匹配的計算區域,大幅的降低匹配計算量。在視頻跟蹤系統中由于被跟蹤的目標處于運動狀態,為了把目標始終保持在攝像機視野之內,必須對攝像機加以控制。在實際應用中,攝像機被固定在云臺上,云臺本身不做平移運動,但可以控制云臺進行水平擺動和上下俯仰,從而帶動攝像機做相應運動。所以,對攝像機的控制就是對云臺的控制。工程師以RK3588核心板為基礎進行定制開發,讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。浙江目標跟蹤廠家電話
另外,經典的跟蹤方法還有基于特征點的光流跟蹤,在目標上提取一些特征點,然后在下一幀計算這些特征點的光流匹配點,統計得到目標的位置。在跟蹤的過程中,需要不斷補充新的特征點,刪除置信度不佳的特征點,以此來適應目標在運動中的形狀變化。本質上可以認為光流跟蹤屬于用特征點的來表征目標模型的方法。在深度學習和相關濾波的跟蹤方法出現后,經典的跟蹤方法都被舍棄,這主要是因為這些經典方法無法處理和適應復雜的跟蹤變化,它們的魯棒性和準確度都被前沿的算法所超越,但是,了解它們對理解跟蹤過程是有必要的,有些方法在工程上仍然有十分重要的應用,常常被當作一種重要的輔助手段。廣西數據目標跟蹤全國產化智能處理板應用廣闊。
實際上,跟蹤和檢測是分不開的,比如傳統TLD框架使用的在線學習檢測器,或KCF密集采樣訓練的檢測器,以及當前基于深度學習的卷積特征跟蹤框架。一方面,跟蹤能夠保證速度上的需要,而檢測能夠有效地修正跟蹤的累計誤差。不同的應用場合對跟蹤的要求也不一樣,比如特定目標跟蹤中的人臉跟蹤,在跟蹤成功率、準確度和魯棒性方面都有具體的要求。另外,跟蹤的另一個分支是多目標跟蹤(MultipleObjectTracking)。多目標跟蹤并不是簡單的多個單目標跟蹤,因為它不僅涉及到各個目標的持續跟蹤,還涉及到不同目標之間的身份識別、自遮擋和互遮擋的處理,以及跟蹤和檢測結果的數據關聯等。
目標檢測和跟蹤是計算機視覺領域中的重要任務之一。隨著深度學習的興起,YOLO(You Only Look Once)算法在目標檢測和跟蹤領域引起了廣關注。YOLO算法是一種在實時目標檢測和跟蹤領域具有重要地位的算法。通過引入卷積神經網絡和一系列先進技術,YOLO算法在速度和準確性方面取得了明顯的進展。然而,仍然有一些挑戰需要解決,如目標尺度變化、小目標檢測和復雜背景干擾等。隨著研究的不斷深入和技術的不斷發展,YOLO算法有望在實時目標檢測和跟蹤領域發揮更大的作用。慧視RK3588圖像處理板能實現24小時、無間隙信息化監控。
在周界安防領域,傳統的攝像頭有畫無聲并不具備報警功能。慧視AI圖像處理板能夠賦能監控進行AI識別,當出現可疑人物有翻越等入侵行為時,監控能夠立即鎖定跟蹤目標人物,并向安保室發出警報,安保室人員能夠通過監控的AI跟蹤鎖定找到可疑人員的移動軌跡,便于糾察。此外,針對于夜間監控的不足,慧視雙光吊艙識別裝置能夠實現晝夜成像,白天通過可見光實現區域的監控畫面,在夜晚通過紅外實現道路或者目標區域的畫面成像,使得一些光線較差的區域也能實現清晰成像,避免被可疑人員鉆空。這樣就能在小區出入口、室外路口、周界、園區活動空間、地下室以及高空拋物防控等重要區域,通過智能監控聯動,實現小區全天候、24小時可視化報警監控。通過及時預警通知,規避安全風險,實現小區的安全管理。Viztra-LE034圖像跟蹤板采用國內智能AI芯片。廣西目標跟蹤性價比
AI算法賦能下的圖像處理板能夠進行智能目標識別。浙江目標跟蹤廠家電話
從軟件的角度來看,整個視頻跟蹤系統主要是由電視攝像機及控制、圖像獲取模塊、圖像顯示模塊、數據庫,運動檢測,目標跟蹤,報警輸入和人機接口模塊等組成的。視覺計算模塊是視頻跟蹤系統的重點,是實現目標檢測和跟蹤的關鍵,如圖3所示。一般采取先檢測后跟蹤(Detect-before-Track)方式,目標的檢測和跟蹤是緊密結合的。檢測是跟蹤的前因,并為跟蹤提供了目標的信息(如目標的位置,大小,模式和速度估計等),而跟蹤則是檢測的延續,實時利用檢測得到的知識去驗證目標的存在。浙江目標跟蹤廠家電話