目前SCR脫硝催化劑的研究熱點之一是過渡金屬負載或者離子交換的微孔分子篩催化劑,該催化劑一般以Cu或者Fe為活性組分。Cu基分子篩催化劑具有良好的低溫催化能力;Fe基分子篩催化劑能在高溫下保持較高的NOx轉化率;過渡金屬氧化物CeO2因良好的氧化還原能力和強烈的金屬間相互作用,在催化劑上的應用前景也相當廣闊。唐劍驍等以等體積浸漬法為基礎,探究微波干燥和普通干燥制得負載型Cu基分子篩催化劑M-4Cu-ZSM-5和4Cu-ZSM-5的脫硝活性。研究結果表明,銅的引入對ZSM分子篩的脫硝活性有明顯的提升作用;M-4Cu-ZSM-5催化劑在低于200℃時顯示比4Cu-ZSM-5略高的脫硝活性。黃增斌等分別以β、ZSM-5和USY分子篩為載體,采用浸漬法制備了錳鈰催化劑,并對催化劑的低溫脫硝性能進行了測試。實驗結果表明,3種分子篩負載的錳鈰催化劑均有較好的低溫活性,其中Mn-Ce/USY催化劑在107℃時NOx轉化率能達到90%。活性組分MnOx主要以無定型態分布于催化劑表面,催化劑表面弱酸對反應起主要作用。Zhao等分別以ZSM-5、SAPO-34為載體,制備了Cu-Mn雙金屬分子篩催化劑Cu-Mn/ZSM-5、Cu-Mn/SAPO-34。實驗結果表明,當Cu/Mn比為3∶2時。脫硝系統的還原劑儲量應滿足系統使用4~7天為宜,并能夠滿足消防和安全環保要求;山西小風量脫硝
Fe2O3表面的WOx處于高度不飽和配位狀態,是一種有效的表面改性劑。另外,在SCR反應過程中,WOx也為NH3的吸附和活化提供了豐富的Lewis和Brnsted酸位點。該催化劑上的NH3-SCR反應主要遵循氣態NO與活性NH3吸附之間的ER反應途徑,這是其抗SO2性能優良的主要原因。Chen等制備了δSCR低溫脫硝催化劑。根據DRIFTS的結果,氣相NO+O2通入后能與預吸附在表面的NH3反應,說明該SCR反應遵循E-R機理;同時,NH3吸附在催化劑表面后能迅速與預吸附的硝酸鹽發生反應,說明該SCR反應也遵循L-H機理,由此可推斷,E-R和L-H機理在δ催化劑上一起作用。3低溫SCR脫硝催化劑存在的問題據報道,在水蒸汽存在的條件下,催化劑的表面會形成一層水膜,這層膜會對NOx、NH3與催化劑上活性位點的結合造成阻力。Jiang等通過浸漬法制備了V2O5/TiO2催化劑,考察了H2O對該催化劑NH3選擇性催化還原NO性能的影響。結果表明,H2O對V2O5/TiO2催化劑上的選擇性催化還原反應具有一定抑制作用,但是同時能抑制N2O的生成。H2O的存在會提高催化劑表面的Brnsted酸性位,催化劑的脫硝活性隨著反應氣氛中H2O體積分數的增加而降低,原因可能是出現的大量水蒸汽抑制了催化劑表面Brnsted酸性位上NH+4與NO的反應。湖北脫硝方案設計SNCR系統主要有氨水卸車和儲存、輸送和加壓、霧化、控制等模塊組成;
SNCR脫硝技術典型案例01SNCR技術SNCR即為選擇性非催化還原法,是一種經濟實用的NOx脫除技術,其原理是以NH3、尿素等作為還原劑,在注入到鍋爐之前霧化或者注入到鍋爐中靠爐內的熱量蒸發霧化。在適宜的溫度范圍內,氣相的氨或者尿素就會分解為自由基NH3和NH2,在特定的溫度和氧存在的條件下,還原劑與NOx的反應優于于其他反應而進行。還原劑有不同的反應溫度范圍,此溫度范圍稱為溫度窗口,對本方法的脫硝效率有較大影響。02SNCR的反應機理SNCR是一種不用催化劑,在850-1100℃范圍內還原NOx的方法。SNCR技術是把還原劑如氨、尿素噴入爐膛溫度為850-1100℃的區域,該還原劑迅速熱分解成NH3并與煙氣中的NOx進行SNCR反應生成N2和H2O。該方法以爐膛為反應器,可通過對鍋爐進行改造實現。SNCR反應物貯存和操作系統與SCR系統是相似的,但它所需的氨和尿素的量比SCR工藝要高。在爐膛850-1100℃這一狹窄的溫度范圍內,在無催化劑作用下,氨或尿素等氨基還原劑可選擇性地還原煙氣中的NOx,基本上不與煙氣中的O2反應,主要反應為:氨為還原劑:NH3+NOx→N2+H20尿素為還原劑:CO(NH2)2→2NH2+CONH2+NOx→N2+H20CO+NOx→N2+CO2當溫度過高時,超過反應溫度窗口時。
SNCR脫硝工藝技術系統簡單、占地面積少、技術成熟、一次性投資少、運行費用低、操作方便、還原劑選擇范圍較廣、不需要任何催化劑、無SO2/SO3轉化率問題、不增加煙氣阻力、無二次污染、施工周期短、脫硝設備故障或檢修時,鍋爐和發電機組完全可以正常運行,對鍋爐機組的運行影響甚小,適用于電廠老機組改造,是一種經濟實用的脫硝技術。3循環流化床鍋爐選擇SNCR脫硝技術的可行性隨著環保要求的不斷提高循環流化床鍋爐采用SNCR技術基本可以滿足當今嚴格的NOx排放標準的要求,SNCR技術**大NOx脫除率可達70%-80%。從滿足環保排放標準及投資角度考慮,SNCR作為一種經濟實用的脫硝技術得到了***的推廣和應用。循環流化床鍋爐具有一個非常有效的還原劑噴入點和混合反應器-旋風分離器。分離器內的煙氣擾動強烈,十分利于實現噴入的還原劑和煙氣之間迅速而均勻地混合,分離器內氣體流動路徑較長,還原劑在反應區獲得較長停留時間;SNCR反應溫度窗口和爐膛煙氣出口溫度的范圍比較吻合,不會出現NH3氧化反應問題。這些優點使循環流化床鍋爐的SNCR系統可以取得50%-80%的實際脫硝效率,根據燃料不同,循環流化床鍋爐采用SNCR技術,一般NOX排放控制在30-150ppm。脫硝系統的排放標準應根據各地的具體要求確定,并留有一定的余量以適應新標準的要求;
SNCR脫硝技術SNCR脫硝技術即選擇性非催化還原(SelectiveNon-CatalyticReduction,以下簡寫為SNCR)技術,是一種不用催化劑,在850~1100℃的溫度范圍內,將含氨基的還原劑(如氨水,尿素溶液等)噴入爐內,將煙氣中的NOx還原脫除,生成氮氣和水的清潔脫硝技術。在合適的溫度區域,且氨水作為還原劑時,其反應方程式為:4NH3+4NO+O2→4N2+6H2O(1)然而,當溫度過高時,也會發生如下副反應:4NH3+5O2→4NO+6H2O(2)SNCR煙氣脫硝技術的脫硝效率一般為30%~80%,受鍋爐結構尺寸影響很大。采用SNCR技術,目前的趨勢是用尿素代替氨作為還原劑。SNCR脫硝原理SNCR技術脫硝原理為:在850~1100℃范圍內,NH3或尿素還原NOx的主要反應為:NH3為還原劑:4NH3+4NO+O2→4N2+6H2O尿素為還原劑:NO+CO(NH2)2+1/2O2→2N2+CO2+H2OSNCR脫硝系統組成:SNCR(噴氨)系統主要由卸氨系統、罐區、加壓泵及其控制系統、混合系統、分配與調節系統、噴霧系統等組成。SNCR系統煙氣脫硝過程是由下面四個基本過程完成:接收和儲存還原劑;在鍋爐合適位置注入稀釋后的還原劑;還原劑的計量輸出、與水混合稀釋;還原劑與煙氣混合進行脫硝反應。SNCR脫硝工藝流程如圖(二)所示。整個脫硝改造過程可以分為低氮燃燒改造、SNCR或SCR工程、煙氣實時檢測等內容;脫氮脫硝制造價格
小風量的煙氣脫硝宜采用簡便布置型式實現脫硝的目的;山西小風量脫硝
鍋爐燃用低熱值高灰分燃料,尾部灰濃度遠高于煤粉鍋爐,會造成SCR反應器催化劑磨損嚴重、使用壽命降低,將使運行費用增加較大;省煤器后煙溫較煤粉爐低,設計310℃左右為SCR脫硝反應的溫度下限,不利于SCR反應器提高脫硝效率;由于催化劑的加入會將SO2氧化為SO3并與逃逸氨反應生成硫酸氨和硫酸氫銨,易造成空預器積灰堵塞和腐蝕且系統阻力增加較大,影響機組運行安全。鑒于以上因素,不考慮采用SCR或者SNCR+SCR聯合脫硝工藝。脫硝工藝的選擇:煙氣脫硝技術比較(福建地區)SNCR適用于CFB機組,首先其爐膛出口溫度一般在850~1000℃區間內,在SNCR工藝高效“溫度窗”內;其次燃燒后煙氣分三股分別經過分離器,在分離器內劇烈混合且停留時間超過,為SNCR工藝提供了天然的優良反應器;***由于CFB燃燒技術是一種低NOX燃燒技術,CFB鍋爐出口NOX濃度較低,再通過SNCR工藝,可確保出口濃度達到環保要求;此外SNCR工藝投資和運行費用都低于SCR工藝,工業試驗和國外運行經驗均表明SNCR系統用于CFB鍋爐,設計合理可達50%以上脫硝效率,氨逃逸可低于8ppm。綜合比較認為:采用SNCR脫硝技術,對該項目鍋爐效率、排煙溫度、鍋爐受熱面以及鍋爐下游設備造成腐蝕的影響均較小。山西小風量脫硝
無錫索本工業技術有限公司屬于機械及行業設備的高新企業,技術力量雄厚。索本是一家有限責任公司(自然)企業,一直“以人為本,服務于社會”的經營理念;“誠守信譽,持續發展”的質量方針。公司業務涵蓋SGY型干霧抑塵系統,SXH洗輪機,VOC廢氣處理,脫硝噴槍,價格合理,品質有保證,深受廣大客戶的歡迎。索本自成立以來,一直堅持走正規化、專業化路線,得到了廣大客戶及社會各界的普遍認可與大力支持。