PID調節器是人們在工程實踐中摸索出來的一種實用性強并且控制原理簡單的校正裝置。1)比例項P**當前信息,調節后的輸出與輸入信號呈比例關系,偏差一旦產生,控制器立即作用減少偏差。比例系數增大系統靈敏度增加,系統振蕩增強,大于某限定值時系統會變的不穩定。當*有比例控制時系統存在穩態誤差;2)積分I控制輸出與輸入信號的累計誤差呈正比,積分項可以消除穩態誤差,提高系統的無差度,改善系統的靜態性能。積分作用的強弱取決于積分時間常數TI,其值越大積分作用越弱。積分作用太強也會導致系統不穩定。3)微分D控制中,控制器的輸出與輸入信號的微分呈正比,反應信號的變化趨勢。并能再偏差信號變得太大之前,在系統中引入一個早期的修正信號,從而加快系統的動作速度,減少調節時間。微分項可以使系統超調量減少,響應時間變快。按測量原理來分可以分為電阻分壓器、電容分壓器、電磁式電壓互感器、電容式電壓互感器、霍爾電壓傳感器等。無錫霍爾電壓傳感器出廠價
控制電路的軟件設計實則是控制方案的具體實施,其中包含了很多模塊的程序編寫,比如DSP的各個單元基本功能的實現、AD的控制、數據的計算處理等。在此只簡述DSP對AD的控制、DSP輸出PWM波移相產生的方式以及控制系統PID閉環的實施方案。對于任何一個數字控制電路來說,要實現對被控對象的實時的、帶反饋的控制則必須要實時監測和采集被控對象的狀態值。AD模塊是被控對象狀態值采集的必要環節,實現數據的準確采集就必須要實現對AD的準確控制。本試驗中選用的AD的芯片是MAX125。深圳循環測試電壓傳感器案例分為電阻分壓式和電容分壓式,將初級電壓直接轉化為測量儀表可用的低壓信號。
脈沖發電機電源是由原動機、發電機和整流器三部分構成。發電機由原動機拖動,達到額定轉速后發電機將儲存的旋轉勢能轉換為電能,通過整流器變換得到直流電壓對磁體供電。整流器可以通過反饋控制給磁體提供的電壓電流,具有較好的可控性,可以實現對實驗波形的初步調節和控制。由電容器電源和脈沖發電機電源構成磁體主要的電源系統,其中帶有反饋控制的脈沖發電機電源本身具有一定的可控性,可以將平頂磁場紋波控制在一定精度以內,但脈沖發電機電源本身是大容量電源,如果想進一步降低紋波系數,直接對脈沖發電機進行控制難度很大,所以需要在原有兩套電源系統的基礎上再配合使用一個小容量的補償系統。
整個控制板由五個模塊構成:電源模塊、采樣及A/D轉換模塊、DSP控制模塊、PWM輸出模塊、驅動電路模塊。數字控制電路中任何一個芯片的工作都離不開電源,其中DSP芯片和A/D芯片對電源的要求很高,電源發生過電壓、欠電壓、功率不夠或電壓波動等都可能導致芯片不能正常工作甚至損壞。對于任何一個PCB板,電源模塊設計的好壞都直接影響著整個控制板工作的穩定。在設計電源模塊的時候,不僅要為整個控制板提供其所需要的所有幅值的電壓,還要保證每一個幅值的電壓值穩定、紋波小,必要時須電氣隔離,并且電源模塊須功率足夠。板之間的磁場將創建一個完整的交流電路沒有任何硬件連接。
基于以上對移相全橋原理上的分析,本章就主電路的前端整流濾波電路、移相全橋逆變環節、輸出端整流電路和濾波電路進行參數設計。在進行所有參數計算前,我們對從電網所取的電以及初步整流后的電能參數進行計算,為后續計算做準備。一般可以采用下述經驗算法:輸入電網交流電時,若采用單相整流,整流濾波后的直流電壓的脈動值VPP是比較低輸入交流電峰值的20%~25%,這里取值VPP=20%Vin。我們提供給后續變換電路的電源是從電網中取電,如此就涉及到輸入整流環節。整流電路是直接購置整流橋,進行兩相整流。參數計算即是前端儲能濾波電容的參數設計。對于電容器,電容和阻抗(電容電抗)總是成反比的。武漢磁調制電壓傳感器發展現狀
電壓傳感器可以確定交流電壓或直流電壓電平。無錫霍爾電壓傳感器出廠價
微分時間常數一般先取值為0,當系統的控制效果不夠好的時候,可以跟設定比例積分常數和積分時間常數的方法一樣,***選定最大值的0.3倍左右。PID環節的參數設定完成后,將參數代入程序內部,根據實際實驗的數據進行聯調。如圖4-10所示為PID子程序執行流程的框圖,將系統設定的信號和采集到的信號作差得到偏差值,利用得到的偏差值根據上述比例、積分和微分三個環節的計算得到移相角,輸出給驅動模塊控制開關管。然后將本次計算得到的偏差值作為下一次PID計算的偏差值的初值,等待中斷然后循環進行PID的計算,實時調節輸出電壓。無錫霍爾電壓傳感器出廠價