七、YTHDF1-FZD7-b-catenin軸促進胃*進展
和B, Western blot分析YTHDF1、FZD7、B -catenin和***的B -catenin在YTHDF1敲低的MGC-803 (A)和HGC-27 (B)細胞中轉染FZD7構建物或空載體對照。C和D,如上所述MGC-803 (C)和HGC-27 (D)細胞的增殖。E,如上所述MGC-803(左)和HGC-27(右)細胞的遷移分析。F,如上所述MGC-803(左)和HGC-27(右)細胞的侵襲分析。G,熱圖顯示YTHDF1, FZD7,(總)b-catenin在人胃*樣本中的表達結果(n= 79)。H, YTHDF1、FZD7和(總)b-catenin在人胃*樣本中的表達的相關性分析(n= 79;Pearson和Spearman相關檢驗)。I,三對胃**及鄰近正常組織中YTHDF1、FZD7、活化b-catenin的代表性IHC芯片結果。J,胃*患者YTHDF1、FZD7、(total) b-catenin (low, n 39; high, n 40)及總生存率Kaplan Meier分析(log-rank with Mantel Cox test)。K,顯示YTHDF1如何調節b-catenin信號通路促進胃*進展的示意圖。 METTL14上調促進胰腺*生長和轉移。上海胃腸道科研
5)Pex衍生的CD44v6/C1QBP復合物介導了Pex對肝纖維化和PDAC肝轉移的積極作用
此前,我們發現IGF-1可以通過誘導補體C1q結合蛋白(C1QBP)從細胞質轉位到膜上,驅動CD44v6/C1QBP復合物的形成,從而***IGF-1下游通路。因此,我們很想知道C1QBP是否通過CD44v6相互作用參與Pex誘導的HSC活化。我們的結果表明C1QBP在Pex中的表達明顯高于Npex(圖6A)。如圖6B所示,C1QBP在Pex孵育的HSCs中表達高于Npex組。同時,與Pex處理的細胞相比,C1QBP-kdPex處理HSCs后C1QBP蛋白水平***降低(圖6B)。與Pex轉移的CD44v6在HSCs中的位置一致,膜中也檢測到C1QBP,并與Pan-cadherin共定位(圖6C)。這些數據表明,C1QBP可以通過Pex傳遞到HSCs膜。免疫電鏡顯示CD44v6和C1QBP在Pex***表達(圖6D)。同時過表達CD44v6和C1QBP后,Co-IP檢測顯示CD44v6和C1QBP在Pex中相互作用(圖6E)。此外,通過近距離連接(圖6F)和免疫熒光分析(圖6G),我們發現了CD44v6和C1QBP在Pex孵化的HSCs膜上的結合。這些發現表明,CD44v6在傳遞外泌體CD44v6/C1QBP復合物中起重要作用。 智力障礙拷貝數科研中標率高大黃酸改變嘌呤代謝降低尿酸水平。
7)USP35敲除增強肺*細胞的化療敏感性
鑒于USP35在肺*細胞中的高表達及其在調節鐵死亡中的作用,我們**終評估了USP35沉默是否能使肺*細胞對化療藥物敏感。如圖9A-C所示,USP35缺乏的H460和H1299細胞在體外對DDP和PTX的毒性作用更敏感,細胞活力和定殖的降低證明了這一點。相應地,接種USP35缺陷*細胞的荷瘤小鼠經DDP或PTX***后**體積和重量均減少(圖9D,E)。酪氨酸激酶抑制劑(TKI)已成為常規化療的替代藥物,并為肺*患者提供了***的生存益處。
與HuR的RRM3結合,中斷HuR-β-actinmRNA相互作用,抑制β-actin表達,抑制OPC遷移
為闡明lnc-PMIF如何與HuR相互作用調節β-actin表達和OPC遷移,首先通過生物信息學分析預測了lnc-PMIF的二級結構,并合成生物素化的全長lnc-PMIF(WT)和截短的lnc-PMIF突變體,分別為突變體A1(無5’莖環的正義)、突變體A2(有中心莖環和3’莖環的正義)和突變體A3(*有3’莖環的正義1100-1455bp),轉染MC3T3-E1細胞,并進行標記RNA鏈霉親和素下拉試驗。蛋白免疫印跡分析顯示,HuR存在于轉染WTlnc-PMIF、截短lnc-PMIF突變體A1或截短lnc-PMIF突變體A2的細胞的下拉部分中,但在轉染截短lnc-PMIF突變體A3的細胞的下拉部分中不存在。這些數據表明,lnc-PMIF的中心莖環足以實現lnc-PMIF和HuR之間的相互作用。 巨噬細胞表型協調急性胰腺炎損傷后的炎癥和修復再生。
四、TEA-seq轉錄本、表位和可及性的三峰測量
A.隨著從單個核中同時捕獲RNA-seq和ATAC-seq的商業平臺的發布,我們推斷通透細胞可以用于同時捕獲三個主要的分子隔間:DNA可以用scATAC-seq捕獲,RNA可以用scRNA-seq捕獲,蛋白質表位豐度可以用聚腺苷化抗體條形碼捕獲,我們根據轉錄本、表位表位和可及性將其稱為TEA-seq。經過試驗和關鍵步驟的優化后,我們能夠在10倍基因組MultiomeATAC+基因表達平臺上獲得文庫,該平臺使用46個低聚標記抗體組合了數千個單細胞的所有三種測量結果.
B.D.在對裝入4孔的細胞進行初始數據處理后,我們鑒定出29264個通過上述scATAC-seqQC標準的細胞條形碼,有2,500,500個獨特的ATAC-seq片段(中值=8762個獨特的ATAC片段),有>500個基因被scRNA-seq檢測到(中值=2399個RNAUMIs;中位數=檢測到129,249個基因),500個ADTUMIs.
G.H.更敏感的蛋白質豐度測量允許檢測許多附加的相關標準物質,例如CCR2/CD192.
I.J.一種單核細胞上表達的趨化因子受體和CD38,一種表達于多種免疫細胞表面的糖蛋白. 專注于生命科學內的前沿研究。天津微生物失調科研
英拜是您身邊的科研小助手。上海胃腸道科研
3)IGF-1信號在Pex誘導的HSC活化和肝纖維化中至關重要
為了進一步探索Pex調控HSC行為的機制,我們比較了Pex和Npex組間的HSC的RNA測序基因表達譜(圖3A)。在差異表達基因中,我們觀察到41個重疊的上調基因在Pan02exo組與Npex組和KPCexo組與Npex組之間存在部分交集(圖3B)。主要涉及的基因參與細胞外空間、細胞外區域和ECM(圖3C),表明Pex調節HSC的ECM分泌。此外,GO和KEGG通路分析顯示,IGF-1及其下游PI3K/AKT是受Pex影響的排名比較高的信號通路(圖3D,E)。westernblot分析支持了Pex***增加HSC中IGF-1R、IRS-1和AKT磷酸化的發現(圖3F)。當使用IGF-1R抑制劑時,Pex誘導的p-IGF-1R、p-IRS-1和p-AKT的上調被阻斷(圖3G)。基于這些結果,我們推測IGF-1信號可能是介導Pex依賴的HSC活化的關鍵因素。與預期的一樣,IGF-1R抑制劑抑制了Pex誘導的HSC的活化、增殖和遷移(圖4A-D)。此外,IGF-1R抑制劑逆轉了Pex誘導的HSC中ECM的產生(圖4E)。我們的體內實驗表明,IGF-1R抑制劑可以阻斷Pex誘導的肝纖維化(圖4F-I)。這些數據表明IGF-1信號在Pex誘導的肝纖維化中起重要作用。 上海胃腸道科研
公司特色是以各式高通量二代測序為基礎,利用生物數據信息分析手段,通過英拜生物自有的分子、病理以及細胞實驗平臺,提供課題整體設計外包、撰寫SCI論文一站式服務。公司實驗平臺落座在漕河涇開發區浦江園區,實驗平臺開放參觀,客戶可隨時參觀實驗并參與實驗課題的進度,保證您的實驗是在您的指導下完成。
1.整體課題外包服務:RNA甲基化研究專題,外泌體研究專題,wnt/VEGF/toll等經典通路研究,設計的課題均具有后續實驗課題的延展性,為您的標書奠定較好的基礎
2.標書申請:提供標書課題設計、撰寫,標書部分基礎實驗的開展,設計的標書均符合科研前沿熱點,中標率很高。
3.提供熱點**文獻技術支持,探討科研前沿熱點研究:trfRNA,DNA/RNA甲基化,外泌體,自噬,WNT等相關研究
4.二代測序:轉錄組測序、smallRNA測序、snoRNA測序、TRF測序
5.芯片:信號通路pcr芯片蛋白芯片
6.表觀遺傳實驗:DNA甲基化實驗(BSP,MSP,焦磷酸測序),RNA甲基化實驗
7.實時定量PCR(mRNA,LncRNA,microRNA,circRNA),WB,RNA功能驗證實驗(靶基因驗證,過表達,干擾),基因突變及SNP檢測,FISH,RNA-PULLdown,rip,chip實驗以及細胞增殖,凋亡,流式等細胞功能學實驗